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This paper explores the nature of students’ quantitative reasoning and conceptions of functions 
supporting their ability to symbolize quadratic function rules, and the meanings students make of 
these rules. We analyzed middle school students’ problem solving activity during a small group 
teaching experiment (n=6) emphasizing quadratic growth through covarying quantities. Results 
indicate four modes of reasoning supportive of students’ symbolization of quadratic function rules: 
(a) correspondence, (b) variation and correspondence, (c) covariation, (d) flexible covariation and 
correspondence. We discuss implications for research on learning vis-à-vis students’ 
representational fluency, as well as design principles to support quantitative reasoning. 
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Research Issues and Purpose 
Students’ understanding of functions is central to school algebra in which two perspectives on 

algebraic thinking are valued: a change and variation perspective, and a structural or symbolic 
perspective (Cai, Bie, & Moyer, 2010). An oft-cited goal of students’ activity in algebra, and 
functional thinking particular, is to cultivate the ability to create, interpret, and connect numeric, 
graphic, symbolic, and verbal representations of functions (Kieran, 2007). Indeed, there is a large 
body of work addressing students’ understanding of function vis-à-vis the study of students’ abilities 
to translate between multiple representations, especially from symbolic to graphical representations 
of function (e.g., Leinhard, Zaslavky, & Stein, 1990). Such research often focuses on students’ 
representational performances (e.g., abilities to connect multiple representations) to the detriment of 
understanding what representations mean to students and how this representational activity is 
supported or constrained by students’ conceptions of mathematical ideas (Thompson, 1994b). 

In this research we explore the interplay between students’ representational abilities and their 
conceptions and meanings of functions. We focus on students’ symbolization of quadratic functions 
of the form y=ax2, a topic commonly taught using a “method of finite differences,” with the meaning 
of a restricted to determining the steepness of the parabola (Ellis & Grinstead, 2008). In contrast to 
these common approaches, we ground our investigation of students’ understandings of quadratic 
functions in a quantitatively rich context as a source of possible meaning for students’ activity 
(Thompson, 1994a). We address three research questions: 

• What is the nature of students’ quantitative reasoning about quadratic growth situations?  
• What ways of reasoning support students’ abilities to symbolize quadratic function rules? 
• How do students make sense of the symbolic quadratic function rules they write? 

We first articulate three mutually supportive lenses that guided our interpretations of student 
thinking: quantitative reasoning, conceptions of function, and representational fluency. 

Theoretical Framework and Background 

Quantitative Reasoning and Conceptions of Functions 
By quantities, we refer to measurable attributes of objects or phenomena (Smith & Thompson, 

2007). A quantity is a mental concept, composed of one’s conception of an object, a quality of the 
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object, an appropriate unit or dimension, and a process for assigning a value to the quality 
(Thompson, 1994a). Examples of attributes that can be conceived as quantities are height, length, and 
area. Students engage in quantitative reasoning when they operate with quantities and their 
relationships, conceiving new quantities in relation to one or more already conceived quantities. 
Comparing quantities multiplicatively is a critical aspect of quantitative reasoning. 

A correspondence perspective of function identifies function relationships such as y = ax2 as the 
fixed correspondence mapping between the members of two sets (Farenga & Ness, 2005; Smith, 
2003). From this perspective, pairs of quantities are linked by a multiplicative relationship. Although 
this static view of function is privileged in school mathematics curricula, some researchers argue that 
a covariation approach to functional thinking is important in supporting a well-developed 
understanding of function as a dynamic relationship between quantities (e.g., Confrey & Smith, 
1994; Thompson & Carlson, in press).  

One stance on covariation involves the examination of a function in terms of coordinated changes 
of x- and y-values, in which students move operationally from ym to ym+1 coordinating with 
movement from xm to xm+1 (Confrey & Smith, 1994; Smith, 2003). This perspective requires that 
students understand quantities as having a sequence of values and relate the values in each sequence 
additively or multiplicatively. Thompson and Carlson (in press) instead emphasize the importance of 
helping students envision change through the notion of continuous variation. Students who can think 
about smooth continuous variation can imagine a variable’s magnitude increasing in bits while 
simultaneously anticipating that within each bit, the value varies smoothly. From this stance, students 
engage in covariational reasoning when they can envision the values of two quantities, such as the 
height and the area of a growing rectangle, varying together (Thompson & Carlson, in press). In this 
study we will characterize students’ reasoning as covariational when they attend to coordinated 
change across two or more quantities. This does not mean the students necessarily thought about 
continuous variation; in many cases, their understanding of variation was likely chunky, or even 
discrete. However, we characterize reasoning as covariational when students used language and 
gestures that suggested images of a rectangle’s height values and area values simultaneously varying 
together.  

Representational Fluency and Meaning Making 
Zbiek, Heid, Blume, and Dick (2007) define representational fluency as "the ability to translate 

across representations, the ability to draw meaning about a mathematical entity from different 
representations of that mathematical entity, and the ability to generalize across different 
representations" (p. 1192). In this study we focus on both students’ translations (i.e., the correct 
creation and interpretation of quadratic function rules from tables, words, or diagrams), and what 
these symbolizations mean to students. What one is able to “see” in a representation is supported and 
constrained by what one knows (Piaget, 2001). Thus we adopt a constructivist stance in building 
second-order models of students’ mathematics (Steffe & Olive, 2010), making inferences about 
students’ meaning making as opposed to first-order models of a researcher’s meanings of 
representations. 

Methods 

Teaching Experiment 
We conducted a 15-day videotaped teaching experiment (Steffe & Thompson, 2000) with 6 

middle school students in an after school setting. The teacher-researcher (TR, Ellis) taught all 
teaching sessions, each lasting 1 hour. All sessions were transcribed and pseudonyms were assigned 
to all participants. One purpose of the small-scale teaching experiment is to gain direct experience 
with students’ mathematical conceptions and the change in those conceptions over time (Simon, 
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1995). Our aim was to study the factors promoting students’ algebraic generalizations as they 
explored rectangles that grew proportionally by maintaining the same height-to-length ratio. The 
teaching-experiment setting supported the development and testing of hypotheses about students’ 
understanding in real time while engaging in teaching actions. Thus, the mathematical topics for the 
entire set of sessions were not pre-determined, but instead we created and revised new tasks on a 
daily basis in response to hypothesized second-order models of the students’ mathematics. 

Task design. All tasks were grounded in the growing rectangle context, in which the relationship 
between the height, h, and the area, A, can be expressed as A = ah2. Students worked with computer 
simulations of the growing rectangles, drew their own rectangles, created tables representing the 
heights, lengths, and areas of growing rectangles, and created and justified algebraic rules comparing 
the rectangles’ areas with their heights (Figure 1). 
 

  
Figure 1. Sample far prediction and generalization tasks. 

Data Sources and Analysis 
Data for this study included video, transcripts, and PDFs of students’ written work. We analyzed 

all student discourse and written work in which a student stated (written or spoken) a correct rule of 
the form A = ah2. Data analysis focused on identifying the nature of students’ quantitative reasoning 
(RQ1), ways of reasoning supportive of symbolizing function rules (RQ2), and students’ meanings 
for the coefficient a in the function rule A = ah2 (RQ3). 

Two coders independently coded half of the data corpus in a first round of coding, then met to 
discuss findings and clarify questions. In a second round, one coder (Fonger) independently compiled 
all data from the first round of analysis and named major code categories and subcategories. In a 
third round of analysis Fonger re-analyzed all compiled data, one (sub)category at a time in a 
constant comparative fashion (Strauss & Corbin, 1990), referring to the original transcripts as 
needed. In a fourth round of analysis, Fonger engaged in axial coding (Straus, 1987) to discern 
relationships among codes. Coding was aimed at identifying how types of quantitative reasoning may 
have supported students’ symbolization of rules and meanings of a. For a given episode it was 
possible for a student to demonstrate multiple forms of quantitative reasoning; all types were coded 
where appropriate, except when a student demonstrated evidence of covariation, in which case we 
did not also code variation. In cases in which students demonstrated flexibility across ways of 
reasoning, we coded multiple meanings of a. 

Results 

Students’ Quantitative Reasoning 
We characterized the nature of students’ quantitative reasoning about functional growth 

situations (RQ1) into four types: (a) Static Correspondence, (b) Variation, (c) Uncoordinated 
Variation, and (d) Covariation (Figure 2).  
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Figure 2. Quantitative Reasoning about Functional Growth Situations. 

For Static Correspondence, students demonstrated evidence for reasoning multiplicatively across 
quantities, directly relating each y value to a corresponding x value. This includes both multiplicative 
relationships between height (x) and length (y1) and height (x) and area (y2); the first case was more 
common. For example, Daeshim said “height times 3 is length” and Bianca noted “length over 
height” as a static multiplicative relationship across linked quantities. 

Students reasoned about variation when they reasoned about change within a single quantity, for 
instance, attending to growth in area without coordinating with growth in height. Typical ways in 
which students reasoned about variation in quantities was through attending to either differences in 
height or in length of the growing rectangle, but not to both. For example, for the rule A = .75h2 Ally 
described .75 as “the rate of growth of the length.” When students reasoned about variation in more 
than one quantity we categorized their thinking as either uncoordinated variation or covariation. 
Uncoordinated variation is typified by students’ attention to variation in two or more quantities in a 
manner that does not coordinate simultaneous change, but rather treats the variation as isolated 
patterns or sequences (Figure 3).  
 

 
Figure 3. Ally’s uncoordinated variation of length and height. 

Ally’s work in Figure 3 (for Task b) shows how she computed length values for each pair of 
height and area values. Ally attended to variation in L by computing successive differences in length 
(which the students called DiL). She also noted a pattern for the difference in height (which the 
students called DiH), writing, “you can’t reduce regularly because it is going up by 2s.” Thus Ally 
attended to DiL and DiH as isolated patterns.  

Finally, we characterized students’ quantitative reasoning as covariational when they attended to 
a coordinated change across more than one quantity, envisioning both quantities varying together. 
For example, Jim wrote the rule A=4.5h2 and explained if you grew a rectangle “it would go over 4.5 
for every time you go up the height 1.” 

Conceptual Supports for Students’ Ability to Symbolize Function Rules 
Students’ symbolization of quadratic function rules of the form A = ah2 was supported by four 

modes of reasoning (RQ2): (a) Static Correspondence, (b) Variation and Static Correspondence 
(when ΔH=1), (c) Covariation, and (d) Flexible Covariation and Correspondence. Each mode of 
reasoning is exemplified across two task types in Table 2 (save mode D, which combines modes A 
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and C). See Figure 1 for the two tasks (Tasks a and b), in which ΔH=1 for Task a and ΔH=2 for Task 
b. The examples in Table 2 are sample student responses to these tasks, and are paraphrased from our 
analyses of student thinking. These results reflect the relationships observed in students’ quantitative 
reasoning. 

Table 1: Conceptions of Functions Supportive of Symbolizing Function Rules 
Mode of Reasoning Example for ΔH=1 Example for ΔH>1 

A. Static Correspondence. Student writes a rule by 
computing a ratio of two quantities, either (a) 
length to height, or (b) area to height2. 

A=.75h2 because I take the 
ratio of length to height, 
2.25/3, which is .75. 

A=4h2 because the 
ratio of the length to 
height, 8/2, is 4. 

B. Variation and Static Correspondence. Student 
reasons about the difference in length (DiL), 
multiplicatively relates height and change in length 
(L=H*DiL), and writes the rule A=HL as 
A=H(DiL*H). 

A=.75h2 because .75 is the 
difference in length, so I 
can write L=.75*H, and 
A=LH so A=(.75H)(H) 

n/a (i.e., mode of 
reasoning leads to 
incorrect rule) 

C. Covariation. Student understands coordinated 
variation in two linked quantities and uses this to 
support writing a correspondence rule of the form 
A = ah2. This includes change in length, change in 
height, and rate of growth of area. 

A=.75h2 because the 
length changes by .75 
each time (the height 
changes by 1). 

A=4h2 because the 
length increases by 
8 cm for every 2-cm 
increase in height. 

 
There are two important cases to discuss regarding our results of RQ1 in relation to RQ2. First, in 

some cases, students’ quantitative reasoning was evident in their thinking without necessarily 
supporting their ability to write a rule. For example, Bianca reflected on the rule A=4.5h2 and 
questioned “What is the 4.5 that we came up with? What does that have to do with anything? Length 
over height!” Thus Bianca’s reasoning about a correspondence relationship did not inform her 
writing of the rule (it was a retrospective connection she made). Second, some types of reasoning did 
not support students’ ability to write correspondence rules. Recall Ally’s reasoning on Task b (Figure 
3). Notice that Ally wrote the rule h×8×h=A, which was informed by her understanding that A=HL 
and H=8L (mode B, variation and static correspondence for ΔH>1). This example illustrates two 
findings: Ally’s variation and static correspondence reasoning for ΔH>1 led to an incorrect rule (see 
Table 2), and Ally’s uncoordinated variation of DiL and DiH did not support writing a correct rule. 
Thus in what follows we focus only on the cases for which students’ quantitative reasoning informed 
their symbolization of function rules. For brevity, we exemplify modes B and D. 

In mode B, students coordinated their reasoning about variation in length with reasoning about a 
static relationship between height and length in order to re-write the area formula A=HL in terms of 
these quantities. For example, on Task b, Tai found “the rate of growth of the length” to be .75 and 
explained “height times .75 equals the length … and then you take the length and you times it by the 
height.” Thus Tai attended to variation in L to posit .75 as the rate of growth in the length, then stated 
a multiplicative correspondence relation between length and height (H*.75=L), and used the rule 
A=LH to write .75h2. 

In mode D, students could think both covariationally and in terms of correspondence relations to 
symbolize function rules. Daeshim, Jim, Bianca, and Tai demonstrated flexibility in their conceptions 
of functions across the static correspondence view and the covariation view, which supported their 
abilities to symbolize correspondence rules. For instance, given a table of values in which the height 
increased by uniform increments of 3 cm, Jim found the rate of growth in length to be 6.75 cm for 
each 3-cm change in height. He wrote “2.25h2 = Area” and explained that he divided 6.75 cm by 3 
cm “because that's what you're going up by each time.” Jim’s attention to the coordinated change in 
height and length supported his symbolization of the function rule. Jim also demonstrated flexibility 
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in leveraging his correspondence thinking to write rules. In one example, he created a table for the 
height, length and area of a growing rectangle and quickly said “4.5h2 … I just did the first two 
numbers and that’s all I need to do.” Jim computed the ratio of the original length to the original 
height, and thus a static multiplicative relationship informed his writing of the rule. 

Students’ Meanings of Symbolic Quadratic Function Rules 
In light of the finding that students demonstrated great variation in their conceptions supporting 

their ability to symbolize quadratic function rules, it is not surprising that their meanings for a in the 
symbolic function rules they wrote of the form A = ah2 varied as well. We discerned five types of 
meanings of a in students’ symbolic rules A=ah2 as shown in the rows of Table 3. We exemplify 
three themes that emerged across students’ meanings next. 

Table 2: Students’ Meanings of Symbolic Function Rules 
Meaning of a in A = ah2 Nature of Quantitative Reasoning 

A Quantity a = length when height is 1 
Ratio of Quantities a = (original length)/(original height); a = length/height; or 

a = area/(height2) 
Variation in Quantities a = DiL; or a = 1/DiH 
Ratio of Variation in a 
Quantity to Value or 
Quantity 

a = DiRoG/2; a=(DiL)/(original height); or  
a = DiRoG/(2(original height)2) 

Covariation of Quantities a =DiL/DiH; a = DiL when DiH = 1; a = DiL/DiH when DiH>1; 
a = DiRoG/2 = DiL, Δheight = 1; or a = DiRoG/(2*DiH) 

Ratio of Quantities or a Quantity 
Students made sense of the coefficient a both as a quantity and as a ratio of two quantities. For 

instance, Daeshim wrote a general expression nh2, explaining n as “the length when the height is 1” 
(Task b). Bianca explained that the coefficient a could also represent “length over height.” Students 
often wrote the static ratio of length to height in the general form, a = (original length)/(original 
height). The parameter a could also represent a static ratio of area to height squared. For example, 
Tai wrote a symbolic rule 4.5h2 by computing “the area [288] divided by h squared [82=64] equals a 
number [4.5]”. In this case, a = area/(height2). 

Variation and/or Ratio of Variation and Quantity 
As a second theme, students reasoned about the variation in length or in the difference in the rate 

of growth in area (which the students called the DiRoG), sometimes also computing a ratio with a 
fixed quantity. For instance, Ally made sense of a as “the rate of growth of the length” (Task b), or 
a = DiL. Students also attended to the DiRoG in order to determine the value of a. Bianca explained, 
“I just found the DiRoG and divided it by two and then I knew what number to multiply by,” so 
a = DiRoG/2. Other students related variation in quantities to a fixed quantity. For example, Tai 
explained: “First you figure out the, um, length. And then you find out the rate of growth, and then 
you divide the rate of growth by the height, and then you put like whatever number, height squared.” 
In this case, a=(DiL)/(original height). 

Covariation of Quantities 
Students also conveyed meanings of a that were firmly grounded in a covariation perspective, 

both (a) as the ratio of the change in height (DiH) to the change in length (DiL), and (b) as a 
coordination of the difference in the rate of growth (DiRoG) with either the DiL or the DiH. As an 
example of the first meaning, Sarah explained, “the height squared times the DiRoG of the length 
equaled the area [h2*DiRoGL=A]. And then depending on how much it went up by, you would divide 
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by that number [e.g., h2*DiRoGL/2=A].” In this case, a =  DiL when DiH=1 and a = DiL/DiH when 
DiH > 1. In the second case, students coordinated the difference in the rate of growth (DiRoG) with 
variation in height or length. For example, in one task, students had to relate the parameter a to the 
DiRoG. Both Joe and Tai made sense of a as the ratio of the difference in the rate of growth in area 
over 2 which equals the difference in the length. In this case Tai wrote DiRoG/2=DiL thus 
a = DiRoG/2 = DiL, ΔH = 1. It is notable that in these cases the symbolic equation actually 
represents a covariational relationship between coordinated variation in the quantities length and 
height. 

Discussion and Conclusion 
This study addresses how students’ ways of thinking may support their ability to create symbolic 

rules from numeric tables embedded in a quantitative context, and meaningfully interpret those rules 
from both the correspondence and covariational perspectives. Our results suggest that if students’ 
function activity is grounded in a continuous quantitative context, such as the growing rectangle, and 
guided by a purposeful sequence of tasks focused on encouraging covariational reasoning, students 
may come to see function rules as representations of covariation. Such a stance can encourage a 
powerful and flexible understanding of function rules and serve as a productive foundation for 
further exploration in algebra.  

Our findings also suggest that students need not necessarily be flexible in moving back and forth 
between correspondence and covariation views. Instead, students who develop a strong covariation 
view of functional relationships may come to make sense of algebraic symbolic rules as statements of 
covariation (e.g., seeing the parameter a as a relationship between two quantities that vary together). 
For example, recall Jim’s reasoning; for him, the coefficient of 2.25 was a ratio of change in length to 
change in height. This suggests that a correspondence relation between area and height can emerge 
from attention to covariation in height and length, demonstrating the power of covariational 
reasoning in writing function rules (cf. Thompson & Carlson, in press). 

Finally, when we consider the results of RQ1 and RQ2, an important finding emerges: students’ 
conceptions of uncoordinated variation or variation alone were generally not supportive of their 
ability to symbolize function rules. This finding contributes to the literature on students’ ways of 
thinking that might help explain representational disfluencies (i.e., unsuccessful translations from 
verbal descriptions or numeric tables to symbolic rules). On the other hand, we hypothesize that 
students’ representational fluency in symbolizing function rules—especially the meanings they 
developed for the rule A = ah2—seemed to be supported by (a) grounding their activity in a 
quantitatively rich task situation, (b) designing task sequences to encourage attention to the nature of 
how quantities change, (c) asking students to consider how quantities are related, and (d) prompting 
the generalization of those relationships by extending to far cases. Our approach to focus on the 
interplay between students’ conceptions and meaning making from multiple representations of 
functions grounded in a quantitatively rich setting is a productive stance that warrants further 
exploration and research. 
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